### Grouped By

G p → q | Equivalent: G p → q | |

Complement: | ||

DBW | ||

G ¬ p → ¬ q | Equivalent: G ¬ p → ¬ q | |

Complement: | ||

DBW | ||

a ∧ X b | Equivalent: a ∧ X b | |

Complement: | ||

NBW | ||

X X → p | Equivalent: X X → p | |

Complement: | ||

NBW | ||

G p → q ∨ r | Equivalent: G p → q ∨ r | |

Complement: | ||

DBW | ||

G (p ∧ q) → r | Equivalent: G (p ∧ q) → r | |

Complement: | ||

DBW | ||

G p ∨ q ∧ r | Equivalent: G p ∨ q ∧ r | |

Complement: | ||

NBW | ||

G p ∨ q ∧ ¬ r | Equivalent: G p ∨ q ∧ ¬ r | |

Complement: | ||

NBW | ||

a U b ∧ ¬ p | Equivalent: a U b ∧ ¬ p | |

Complement: | ||

NBW | ||

X p | Equivalent: X p • ¬ X ¬ p | |

Complement: X ¬ p • ¬ X p | ||

NBW | ||

X ¬ p | Equivalent: X ¬ p • ¬ X p | |

Complement: X p • ¬ X ¬ p | ||

NBW | ||

p → G q | Equivalent: p → G q | |

Complement: ¬ (p → G q) • p ∧ F ¬ q | ||

NBW | ||

p → F q | Equivalent: p → F q • F (O (Z False ∧ p) → q) | |

Complement: ¬ (p → F q) • p ∧ G ¬ q • ¬ F (O (Z False ∧ p) → q) • G (O (Z False ∧ p) ∧ ¬ q) | ||

NBW | ||

¬ (p → G q) | Equivalent: ¬ (p → G q) • p ∧ F ¬ q | |

Complement: p → G q | ||

NBW | ||

¬ (F q → ¬ p U q) | Equivalent: ¬ (F q → ¬ p U q) | |

Complement: F q → ¬ p U q | ||

NBW |