Search
Browse
Shopping Cart
Upload
Settings
Help
Previous Version
Sorted by
State Size
Formula Length
Temporal Hierarchy
Spec Patterns
Refresh
Filtered by
Automaton Type
Select
/
Deselect
All
NBW
DBW
NGBW
DGBW
NCW
DCW
NMW
DMW
NRW
DRW
NSW
DSW
NPW
DPW
State Size
Select
/
Deselect
All
1 state
2 states
3 states
4 states
5 states
More than 5 states
Formula Length
Select
/
Deselect
All
No temporal formulae
1 temporal operator
2 temporal operators
3 temporal operators
4 temporal operators
More than 4 operators
Temporal Hierarchy
Select
/
Deselect
All
To Be Determined
SafeGuarantee
Safety
Guarantee
Obligation
Recurrence (Response)
Persistence
Reactivity
Spec Patterns
Select
/
Deselect
All
Unknown
Absence
Universality
Existence
Bounded Existence
Precedence
Response
Precedence Chain
Response Chain
Constrained Chain Patterns
Refresh
Grouped By
Language Class
Refresh
<< First page
< Pre
5
6
7
8
9
[10]
11
12
13
14
15
Next >
Last page >>
136 - 150 / 401; page
/ 27
F (p ∧ G q)
Equivalent:
F (p ∧ G q)
Complement:
¬ F (p ∧ G q)
•
G (¬ p ∨ F ¬ q)
NBW
¬ G (p → F q)
Equivalent:
F (p ∧ G ¬ q)
•
¬ G (p → F q)
•
F G (¬ q S (p ∧ ¬ q))
•
¬ G F (¬ p B q)
Complement:
G (p → F q)
•
G (¬ p ∨ F q)
•
G F (¬ p B q)
NBW
¬ G F p
Equivalent:
F (¬ p W (False ∧ ¬ p))
•
F G ¬ p
•
¬ G (True U p)
•
¬ G F p
•
¬ F G F p
•
G F G ¬ p
Complement:
G (True U p)
•
G F p
•
F G F p
NBW
¬ G F (p ∨ q)
Equivalent:
F G (¬ p ∧ ¬ q)
•
¬ G F (p ∨ q)
•
¬ (G F p ∨ G F q)
•
F G ¬ p ∧ F G ¬ q
Complement:
G F (p ∨ q)
•
G F p ∨ G F q
NBW
¬ (G ¬ q ∨ F (q ∧ F p))
Equivalent:
¬ (G ¬ q ∨ F (q ∧ F p))
Complement:
G ¬ q ∨ F (q ∧ F p)
NBW
¬ (G (¬ p ∨ ¬ q) ∧ G (¬ p ∨ ¬ r) ∧ G (¬ q ∨ ¬ r))
Equivalent:
¬ (G (¬ p ∨ ¬ q) ∧ G (¬ p ∨ ¬ r) ∧ G (¬ q ∨ ¬ r))
Complement:
G (¬ p ∨ ¬ q) ∧ G (¬ p ∨ ¬ r) ∧ G (¬ q ∨ ¬ r)
DBW
G p ∨ G (q U p)
Equivalent:
G p ∨ G (q U p)
Complement:
NBW
¬ G ((p → F q) U p)
Equivalent:
¬ G ((p → F q) U p)
Complement:
NBW
G F (p U (p ∧ q))
Equivalent:
G F (p U (p ∧ q))
Complement:
DBW
G F (p → F q)
Equivalent:
G F (p → F q)
Complement:
DBW
F (p ∧ X G q)
Equivalent:
F (p ∧ X G q)
Complement:
NBW
G F (p ∧ X q)
Equivalent:
G F (p ∧ X q)
Complement:
NBW
∃ t : t ∧ G (t ↔ X ¬ t) ∧ G (p → t)
Equivalent:
∃ t : t ∧ G (t ↔ X ¬ t) ∧ G (p → t)
Complement:
¬ (∃ t : t ∧ G (t ↔ X ¬ t) ∧ G (p → t))
•
∀ t : ¬ t ∨ F (t ∧ X t ∨ X ¬ t ∧ ¬ t) ∨ F (p ∧ ¬ t)
NBW
G F (¬ p U q)
Equivalent:
G F (¬ p U q)
Complement:
F G (¬ q W (p ∧ ¬ q))
•
¬ G F (¬ p U q)
NBW
G p ∧ G (¬ p ∨ ¬ r U (q ∧ ¬ r))
Equivalent:
G p ∧ G (¬ p ∨ ¬ r U (q ∧ ¬ r))
•
¬ (F ¬ p ∨ F (p ∧ ¬ q W r))
Complement:
F ¬ p ∨ F (p ∧ ¬ q W r)
NBW