Search
Browse
Shopping Cart
Upload
Settings
Help
Previous Version
Sorted by
State Size
Formula Length
Temporal Hierarchy
Spec Patterns
Refresh
Filtered by
Automaton Type
Select
/
Deselect
All
NBW
DBW
NGBW
DGBW
NCW
DCW
NMW
DMW
NRW
DRW
NSW
DSW
NPW
DPW
State Size
Select
/
Deselect
All
1 state
2 states
3 states
4 states
5 states
More than 5 states
Formula Length
Select
/
Deselect
All
No temporal formulae
1 temporal operator
2 temporal operators
3 temporal operators
4 temporal operators
More than 4 operators
Temporal Hierarchy
Select
/
Deselect
All
To Be Determined
SafeGuarantee
Safety
Guarantee
Obligation
Recurrence (Response)
Persistence
Reactivity
Spec Patterns
Select
/
Deselect
All
Unknown
Absence
Universality
Existence
Bounded Existence
Precedence
Response
Precedence Chain
Response Chain
Constrained Chain Patterns
Refresh
Grouped By
Language Class
Refresh
<< First page
< Pre
4
5
6
7
8
[9]
10
11
12
13
14
Next >
Last page >>
121 - 135 / 392; page
/ 27
G (F p ∧ q)
Equivalent:
G (F p ∧ q)
Complement:
F (G ¬ p ∨ ¬ q)
•
¬ G (F p ∧ q)
NBW
G F (¬ p ∨ ¬ q)
Equivalent:
¬ F G (p ∧ q)
•
G F (¬ p ∨ ¬ q)
•
¬ F (G p ∧ G q)
•
G (F ¬ p ∨ F ¬ q)
•
¬ (F G p ∧ F G q)
•
G F ¬ p ∨ G F ¬ q
Complement:
F G (p ∧ q)
•
F (G p ∧ G q)
•
F G p ∧ F G q
NBW
G (p → p U q)
Equivalent:
G (p → p U q)
Complement:
F (p ∧ ¬ q W (¬ p ∧ ¬ q))
•
¬ G (p → p U q)
NBW
G (¬ p ∨ F ¬ q)
Equivalent:
¬ F (p ∧ G q)
•
G (¬ p ∨ F ¬ q)
Complement:
F (p ∧ G q)
NBW
G F (p ∨ q)
Equivalent:
G F (p ∨ q)
•
G F p ∨ G F q
Complement:
F G (¬ p ∧ ¬ q)
•
¬ G F (p ∨ q)
•
¬ (G F p ∨ G F q)
•
F G ¬ p ∧ F G ¬ q
NBW
G (p → (p ∧ ¬ q) U (¬ p ∧ q))
Equivalent:
G (p → (p ∧ ¬ q) U (¬ p ∧ q))
Complement:
F (p ∧ (¬ p ∨ q) R (p ∨ ¬ q))
NBW
G (q ∧ ¬ r → ¬ r U (p ∧ ¬ r))
Equivalent:
G (q ∧ ¬ r → ¬ r U (p ∧ ¬ r))
Complement:
¬ G (q ∧ ¬ r → ¬ r U (p ∧ ¬ r))
NBW
G (p → F q)
Equivalent:
G (p → F q)
•
G (¬ p ∨ F q)
•
G F (¬ p B q)
Complement:
F (p ∧ G ¬ q)
•
¬ G (p → F q)
•
F G (¬ q S (p ∧ ¬ q))
•
¬ G F (¬ p B q)
NBW
F G p
Equivalent:
F (False R p)
•
F (p W False)
•
F G p
•
G F G p
Complement:
¬ F (False R p)
•
¬ F (p W False)
•
¬ F G p
•
G (True U (¬ p ∧ True))
•
G (True U ¬ p)
•
G F ¬ p
•
F G F ¬ p
•
¬ G F G p
NBW
F G (p ∧ q)
Equivalent:
F G (p ∧ q)
•
F (G p ∧ G q)
•
F G p ∧ F G q
Complement:
¬ F G (p ∧ q)
•
G F (¬ p ∨ ¬ q)
•
¬ F (G p ∧ G q)
•
G (F ¬ p ∨ F ¬ q)
•
¬ (F G p ∧ F G q)
•
G F ¬ p ∨ G F ¬ q
NBW
F (p ∧ G q)
Equivalent:
F (p ∧ G q)
Complement:
¬ F (p ∧ G q)
•
G (¬ p ∨ F ¬ q)
NBW
¬ G (p → F q)
Equivalent:
F (p ∧ G ¬ q)
•
¬ G (p → F q)
•
F G (¬ q S (p ∧ ¬ q))
•
¬ G F (¬ p B q)
Complement:
G (p → F q)
•
G (¬ p ∨ F q)
•
G F (¬ p B q)
NBW
¬ G F p
Equivalent:
F (¬ p W (False ∧ ¬ p))
•
F G ¬ p
•
¬ G (True U p)
•
¬ G F p
•
¬ F G F p
•
G F G ¬ p
Complement:
G (True U p)
•
G F p
•
F G F p
NBW
¬ G F (p ∨ q)
Equivalent:
F G (¬ p ∧ ¬ q)
•
¬ G F (p ∨ q)
•
¬ (G F p ∨ G F q)
•
F G ¬ p ∧ F G ¬ q
Complement:
G F (p ∨ q)
•
G F p ∨ G F q
NBW
¬ (G ¬ q ∨ F (q ∧ F p))
Equivalent:
¬ (G ¬ q ∨ F (q ∧ F p))
Complement:
G ¬ q ∨ F (q ∧ F p)
NBW