Search
Browse
Shopping Cart
Upload
Settings
Help
Previous Version
Sorted by
State Size
Formula Length
Temporal Hierarchy
Spec Patterns
Refresh
Filtered by
Automaton Type
Select
/
Deselect
All
NBW
DBW
NGBW
DGBW
NCW
DCW
NMW
DMW
NRW
DRW
NSW
DSW
NPW
DPW
State Size
Select
/
Deselect
All
1 state
2 states
3 states
4 states
5 states
More than 5 states
Formula Length
Select
/
Deselect
All
No temporal formulae
1 temporal operator
2 temporal operators
3 temporal operators
4 temporal operators
More than 4 operators
Temporal Hierarchy
Select
/
Deselect
All
To Be Determined
SafeGuarantee
Safety
Guarantee
Obligation
Recurrence (Response)
Persistence
Reactivity
Spec Patterns
Select
/
Deselect
All
Unknown
Absence
Universality
Existence
Bounded Existence
Precedence
Response
Precedence Chain
Response Chain
Constrained Chain Patterns
Refresh
Grouped By
Language Class
Refresh
<< First page
< Pre
7
8
9
10
11
[12]
13
14
15
16
17
Next >
Last page >>
166 - 180 / 397; page
/ 27
p ∧ X ¬ q
Equivalent:
p ∧ X ¬ q
Complement:
NBW
p → F (q ∨ r)
Equivalent:
p → F (q ∨ r)
Complement:
DBW
G p ∨ q ∨ r
Equivalent:
G p ∨ q ∨ r
Complement:
NBW
X p
Equivalent:
X p
•
¬ X ¬ p
Complement:
X ¬ p
•
¬ X p
NBW
X ¬ p
Equivalent:
X ¬ p
•
¬ X p
Complement:
X p
•
¬ X ¬ p
NBW
p → G q
Equivalent:
p → G q
Complement:
¬ (p → G q)
•
p ∧ F ¬ q
NBW
p → F q
Equivalent:
p → F q
•
F (O (Z False ∧ p) → q)
Complement:
¬ (p → F q)
•
p ∧ G ¬ q
•
¬ F (O (Z False ∧ p) → q)
•
G (O (Z False ∧ p) ∧ ¬ q)
NBW
¬ (p → G q)
Equivalent:
¬ (p → G q)
•
p ∧ F ¬ q
Complement:
p → G q
NBW
¬ (F q → ¬ p U q)
Equivalent:
¬ (F q → ¬ p U q)
Complement:
F q → ¬ p U q
NBW
¬ G (q ∧ ¬ r → ¬ p W r)
Equivalent:
¬ G (q ∧ ¬ r → ¬ p W r)
Complement:
G (q ∧ ¬ r → ¬ p W r)
NBW
¬ (F q → p U q)
Equivalent:
¬ (F q → p U q)
Complement:
F q → p U q
NBW
¬ G (q ∧ ¬ r → p W r)
Equivalent:
¬ G (q ∧ ¬ r → p W r)
Complement:
G (q ∧ ¬ r → p W r)
NBW
¬ G (q ∧ ¬ r → ¬ r W (p ∧ ¬ r))
Equivalent:
¬ G (q ∧ ¬ r → ¬ r W (p ∧ ¬ r))
Complement:
G (q ∧ ¬ r → ¬ r W (p ∧ ¬ r))
NBW
¬ G (q ∧ ¬ r → ¬ r U (p ∧ ¬ r))
Equivalent:
¬ G (q ∧ ¬ r → ¬ r U (p ∧ ¬ r))
Complement:
G (q ∧ ¬ r → ¬ r U (p ∧ ¬ r))
NBW
¬ G (s ∧ ¬ r → ¬ p W (q ∨ r))
Equivalent:
¬ G (s ∧ ¬ r → ¬ p W (q ∨ r))
Complement:
G (s ∧ ¬ r → ¬ p W (q ∨ r))
NBW