Search
Browse
Shopping Cart
Upload
Settings
Help
Previous Version
Sorted by
State Size
Formula Length
Temporal Hierarchy
Spec Patterns
Refresh
Filtered by
Automaton Type
Select
/
Deselect
All
NBW
DBW
NGBW
DGBW
NCW
DCW
NMW
DMW
NRW
DRW
NSW
DSW
NPW
DPW
State Size
Select
/
Deselect
All
1 state
2 states
3 states
4 states
5 states
More than 5 states
Formula Length
Select
/
Deselect
All
No temporal formulae
1 temporal operator
2 temporal operators
3 temporal operators
4 temporal operators
More than 4 operators
Temporal Hierarchy
Select
/
Deselect
All
To Be Determined
SafeGuarantee
Safety
Guarantee
Obligation
Recurrence (Response)
Persistence
Reactivity
Spec Patterns
Select
/
Deselect
All
Unknown
Absence
Universality
Existence
Bounded Existence
Precedence
Response
Precedence Chain
Response Chain
Constrained Chain Patterns
Refresh
Grouped By
Language Class
Refresh
<< First page
< Pre
11
12
13
14
15
[16]
17
18
19
20
21
Next >
Last page >>
226 - 240 / 401; page
/ 27
G (b → X (a U b))
Equivalent:
G (b → X (a U b))
Complement:
NBW
F a U G b
Equivalent:
F a U G b
Complement:
NBW
G (F p → F q)
Equivalent:
G (F p → F q)
Complement:
NBW
G (p → X F (q ∨ r))
Equivalent:
G (p → X F (q ∨ r))
Complement:
DBW
G (p → G F (q ∨ r))
Equivalent:
G (p → G F (q ∨ r))
Complement:
DBW
G F ¬ p ∧ F ¬ q
Equivalent:
G F ¬ p ∧ F ¬ q
Complement:
DBW
X X G p
Equivalent:
X X G p
Complement:
NBW
G (Q ∧ F R → ¬ P U R)
Equivalent:
G (Q ∧ F R → ¬ P U R)
Complement:
NBW
F p ∧ F G ¬ p
Equivalent:
F p ∧ F G ¬ p
Complement:
NBW
F p ∧ G (p → F q)
Equivalent:
F p ∧ G (p → F q)
Complement:
DBW
G (p → p W q W r)
Equivalent:
G (p → p W q W r)
Complement:
¬ G (p → p W q W r)
•
F (p ∧ (¬ r U (¬ q ∧ ¬ r)) U (¬ p ∧ ¬ r U (¬ q ∧ ¬ r)))
NBW
G (¬ p ∨ G (¬ q ∨ O r))
Equivalent:
¬ F (p ∧ F (q ∧ H ¬ r))
•
G (¬ p ∨ G (¬ q ∨ O r))
Complement:
F (p ∧ F (q ∧ H ¬ r))
NBW
G (q ∧ ¬ r ∧ F r → ¬ p U r)
Equivalent:
G (q ∧ ¬ r ∧ F r → ¬ p U r)
Complement:
¬ G (q ∧ ¬ r ∧ F r → ¬ p U r)
NBW
G (q ∧ ¬ r ∧ F r → p U r)
Equivalent:
G (q ∧ ¬ r ∧ F r → p U r)
Complement:
¬ G (q ∧ ¬ r ∧ F r → p U r)
NBW
G (s ∧ ¬ r ∧ F r → ¬ p U (q ∨ r))
Equivalent:
G (s ∧ ¬ r ∧ F r → ¬ p U (q ∨ r))
Complement:
¬ G (s ∧ ¬ r ∧ F r → ¬ p U (q ∨ r))
NBW