
G (a ∨ ¬ X b)

Equivalent:
G (a ∨ ¬ X b) 
Complement: 
NBW 

G F (p → q)

Equivalent:
G F (p → q) 
Complement: 
DBW 

G (p ∧ F q)

Equivalent:
G (p ∧ F q) 
Complement: 
NBW 

G ¬ p ∧ F q

Equivalent:
G ¬ p ∧ F q 
Complement: 
NBW 

G F (¬ p ∧ ¬ q)

Equivalent:
G F (¬ p ∧ ¬ q) 
Complement: 
DBW 

G F (¬ p ∨ q)

Equivalent:
G F (¬ p ∨ q) 
Complement: 
DBW 

G ¬ p ∧ F ¬ q

Equivalent:
G ¬ p ∧ F ¬ q 
Complement: 
NBW 

G (¬ p ∧ F ¬ q)

Equivalent:
G (¬ p ∧ F ¬ q) 
Complement: 
NBW 

G F (p ∧ q)

Equivalent:
G F (p ∧ q) 
Complement: 
DBW 

G (¬ p → F ¬ q)

Equivalent:
G (¬ p → F ¬ q) 
Complement: 
DBW 

G (¬ p → X q)

Equivalent:
G (¬ p → X q) 
Complement: 
NBW 

G ¬ p R ¬ q

Equivalent:
G ¬ p R ¬ q 
Complement: 
NBW 

G (p → X (q ∧ r))

Equivalent:
G (p → X (q ∧ r)) 
Complement: 
NBW 

G (p → X (q ∧ ¬ r) ∨ ¬ q ∧ r)

Equivalent:
G (p → X (q ∧ ¬ r) ∨ ¬ q ∧ r) 
Complement: 
NBW 

G (p → X (q ∧ ¬ r))

Equivalent:
G (p → X (q ∧ ¬ r)) 
Complement: 
NBW 